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Abstract

I aggregate evidence on gender differences in dictator game giving from

experiments published in all working papers and peer-reviewed journals since

1990. Using a two-stage Bayesian hierarchical model, I find that on average

women give around 3 percentage points more than men in studies of dictator

games. I show that while this estimate is smaller than that found in previous

studies, it is likely to be an upper bound estimate due to publication bias.

Using a truncated selectivity model, I estimate the conditional probability

of publication as a function of experiment results. My findings suggest that

experiments that find positive results (i.e. women contribute more than men)

and are statistically different from zero at the 5% level, are around 13 times

more likely to be published than statistically significant and negative results.



1 Introduction

Are women more altruistic than men? Given that assumptions on preferences are

central to models of individual choice, gender differences in altruism would have far-

reaching implications for theoretical and empirical work in economics. For instance,

differences in altruism could explain differences in labour market outcomes between

men and women, including in wages and occupational choice (Bertrand, 2011; Buser

et al., 2014). Recent evidence suggests that these differences also matter at the

aggregate level, with gender differences in altruism predicting economic development

and gender equality across countries (Falk et al., 2016; Falk and Hermle, 2018). With

this motivation in mind, a large body of evidence measures altruism using lab and

field experiments. Yet the overall findings from this literature are ambiguous and

inconclusive.

In this paper, I study whether women are more altruistic than men by aggregating

evidence from first-mover behaviour in dictator games. I collect data on gender dif-

ferences in dictator game behaviour from all working papers and journals, regardless

of whether or not gender was the main topic of interest. My sample covers results

on gender differences in giving from 100 dictator games across 35 studies and repre-

sents the decisions of 20,265 participants. Considered individually, the conclusions

from these experiments are mixed. While Eckel and Grossman (1998), Andreoni and

Vesterlund (2001), and Boschini et al. (2018) find that women give more than men

when the price of giving is one, Bolton and Katok (1995), Ben-Ner et al. (2004) and

Cadsby et al. (2010) find limited evidence for gender differences. Extrapolating a

general finding from these studies is difficult since differences in results are likely

driven by both sampling variation and genuine variation in experimental design and

characteristics.

Using a Bayesian hierarchical model, I quantify the overall giving of women rela-

tive to men in dictator games. Compared with classical approaches to meta-analysis,

the Bayesian hierarchical model allows me to jointly estimate the overall gender dif-

ferences in dictator game giving, and the heterogeneity across studies. This allows

me to separate between within-study and across-study variation, and consequently,
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to estimate the extent to which findings from one study can help us learn about the

overall population effect. My approach complements the growing literature in eco-

nomics that uses Bayesian hierarchical models to aggregate findings across contexts

(e.g. Burke et al., 2015; Bandiera et al., 2016; Vivalt, 2016; Meager, 2019).

My findings suggest that women give 3.2 percentage points more of their endow-

ment than men, with 95 percent probability that the true mean is between 1.7 and

4.5 percentage points. Using pooling metrics suggested by Gelman et al. (2006), I

find that on average 89 percent of the heterogeneity in effects across studies is ex-

plained by sampling variation. Thus, genuine heterogeneity across studies is low and

each additional study is likely to be informative of the overall population effect.

I then turn my attention to exploring publication bias. The results from the

Bayesian hierarchical model can be interpreted as a best estimate of gender differ-

ences in giving, within the context of dictator game experiments that report results

on gender and are available in working papers and journals. The extent to which

these findings generalise to a broader sample relies on how representative published

papers are of dictator game giving in the overall population. If, for instance, papers

that find that women give more than men are more likely to be published, then the

estimated result from the Bayesian hierarchical model is likely to be an overestimate

of the general population effect.

Using a truncated selectivity model, I parametrically estimate the conditional

probability of publication, where following Andrews and Kasy (2019), I assume that

the publication decisions of researchers and editors are a function of the study results.

My results are strongly suggestive of selective publication. Overall, papers that find a

significant and positive (i.e. women give more than men) result are over 13 times more

likely to be published than papers that find a statistically significant and negative

result.

I find evidence that the selection rule is complex, and differs by the topic of the

paper and the quality of the journal. Among papers that explicitly study gender,

I find evidence for selection based on statistical significance, but not on the sign

of the effect. Among high-quality peer-reviewed journals,1 I find that positive and

1I measure high-quality as journals with 5-year average impact factors ranked in the top two
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significant results are more likely to be published than positive and insignificant

results.

Taken together, the findings from the Bayesian hierarchical model suggest that

women give more than men in dictator games in the context of studies where gender

results are made available. While this result is smaller than that found in existing

studies, it is likely to be an upper bound of the overall population effect since results

that are positive and significant are more likely to be published.

My findings relate to the literature on gender differences in social preferences

by aggregating findings from dictator games. Existing review articles provide a

qualitative assessment of the literature (e.g. Eckel and Grossman, 2008; Croson and

Gneezy, 2009). I contribute to these findings by estimating the average differences

in giving and quantifying the likely heterogeneity across studies. Relatedly, Engel

(2011) uses classical meta-analysis techniques to analyse findings from dictator game

experiments. However whereas Engel (2011) separately estimates the average effect

and the cross-study heterogeneity and therefore likely underestimates heterogeneity

(Rubin, 1981), I am able to jointly estimate these two variables of interest using

Bayesian hierarchical methods.

Finally, I highlight a new reason for the gender gap in giving observed in existing

papers: publication bias. My findings here are related to the growing economics liter-

ature on publication bias (Simonsohn et al., 2014; Brodeur et al., 2016; Andrews and

Kasy, 2019). Various other reasons for gender differences in dictator games have been

suggested in the literature, including the price of giving (Andreoni and Vesterlund,

2001), gender priming (Boschini et al., 2018), and anonymity of decision-making

(Dufwenberg and Muren, 2006). I stress that while these experimental differences

are potential sources of gender differences in giving, in the presence of selective pub-

lication, findings from the literature are likely to overestimate the differences in the

overall population.

quartiles in the Annual Journal Citation Reports.
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2 Data and Context

2.1 Selection of studies

To study gender differences in altruism, I focus my attention on behaviour in dictator

games. Introduced by Forsythe et al. (1994) and Kahneman et al. (1986), the dictator

game is a lab experiment involving two players, often referred to as the proposer and

the recipient. The proposer is given a sum of money and decides what proportion of

the money to offer to the recipient, versus what proportion to keep for themselves.

For rational and purely self-interested agents, the subgame perfect Nash equilibrium

of the dictator game is for proposers to keep the entire sum of money for themselves

(i.e. to offer zero). Thus, a positive offer in the first stage is often interpreted as

evidence for altruistic preferences.

While altruism is sometimes measured using other lab experiments, such as pub-

lic goods games or ultimatum games, the dictator game is arguably the cleanest

experimental measure for altruism because it is simple and involves limited strate-

gic interactions (Camerer and Fehr, 2004; Eckel and Grossman, 2008). Relatedly,

first-mover behaviour in the dictator game remains one of the most prominent mea-

sures for altruism in the lab, and has been shown to predict individual and aggregate

economic outcomes (Becker et al., 2011; Falk et al., 2016; Falk and Hermle, 2018).

I collect data on all relevant dictator games published in working papers and

journals published up until the end of 2019 (when this data was collected). I use two

data sources and approaches for compiling relevant papers depending on whether the

paper was published prior to or post 2010.

For papers published from 2010 onwards, I conduct a keyword search of “dictator

game” and the phrases, “altruism”, “generosity”, “philanthropy”, or “intergenera-

tional transfers” on two databases, EconLit and RePEc. This leaves me with a total

of 328 unique papers from journals and working papers published from 2010 to 2019.

To narrow down the search to a relevant sample, I focus my study on non-

interactive, one-stage dictator games. Common variants of dictator games include

giving recipient power, adding multiple stages, or requiring effort to generate the

4



endowment. As such variants are often designed to measure preferences other than

altruism (e.g. risk preferences, reciprocity) I do not include them in my sample.

Of the relevant experimental designs, I include papers in my study if the authors

report the average giving in a dictator game of men and women (or the difference

between the two) and their associated standard errors; or if the full data is provided,

such that these values can be calculated. Note that while most experiments collect

data on gender, contributions disaggregated by gender are often not reported. In

fact, 6 studies in my search state that there are no gender differences in dictator

game giving observed in their experiments, but do not state the average differences

in giving, or the standard errors of these differences. Since these papers have to be

excluded from my sample, the results from this study are likely to be an overestimate

of the true treatment effect. The selection criteria are summarised in Table 1.

Table 1: Selection Criteria

Selection Criteria Description
1 Keywords Dictator Game AND altruism, philanthropy, gen-

erosity, or intergenerational transfers

2 Experimental Design Focus on non-interactive, single stage dictator
games. Exclude sequential or multidimensional
dictator games; games which give recipient power;
games which require effort to generate the endow-
ment

3 Results Reported Results on either (1) Average contributions of men
and women or the gender differences in contribu-
tions, and the associated standard errors, or (2)
Raw data to calculate.

Of the 328 papers identified in my search, 23 of the papers report average giving

in a dictator game of men versus women (with corresponding standard errors); and

4 provide raw data on their experiments, which allows me to calculate the required

results. This leaves me with 27 relevant papers for papers published from 2010.

For papers published prior to 2010, I use data from Engel (2011)’s meta-analysis
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of dictator games, which includes all working and published papers on dictator games

available on EconLit and RePEC up to the end of 2009. Of the 131 papers in his full

dataset, 14 studies provide data on average giving of women versus men in dictator

games, and their associated standard errors. I review the studies using the selection

criteria defined in Table 1, and validate the data against the final reported treatment

effects of the papers. Of the 14 papers included in Engel (2011), I exclude the results

from 6 papers: 2 papers that have since released new versions or have been published

in journals after 2009 (and hence are already in my sample); and 4 papers, since they

do not meet my selection criteria.

2.2 Summary statistics

My final sample comprises results from 35 studies over a total of 100 experiments.

A summary of these results is provided in Table 2. On aggregate, the experiments

in my sample cover 20,265 distinct allocation decisions in dictator games, of which

53% are decisions by women. On average women contribute 2.7 percentage points

more than men, with men contributing 29.7% and women contributing 32.4% of their

endowment. The average giving in my sample irrespective of gender is 31.1%, which

is broadly consistent with the average giving found in the literature (for instance,

Engel (2011) finds an average giving of 28.35%).

Table 2: Average contributions by gender, % stake size

N Mean St. Dev. Min Max

Average contribution of men 100 0.297 0.217 0.000 1.052
Average contribution of women 100 0.324 0.208 0.000 1.131
Gender difference in contribution 100 0.027 0.097 −0.292 0.465

Notes: Gender difference in contribution defined as the percentage point difference in
contribution of women relative to men. Positive gender difference corresponds to women
giving more than men. A contribution of more than 1 corresponds to experiments in
which the price of giving is less than 1 (see: Andreoni and Vesterlund, 2001, for an ex-
ample).
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As is common in lab experiments, most studies in my sample have multiple vari-

ants of the dictator game within the same paper in an attempt to disentangle how

different experimental characteristics may affect average giving (see: Table 3). Com-

mon variants of the dictator game include variation in the price of giving (e.g. An-

dreoni and Vesterlund, 2001; Visser and Roelofs, 2011); the anonymity of the dictator

and identity of the recipient (e.g. Cadsby et al., 2010; Dufwenberg and Muren, 2006;

Slonim and Garbarino, 2008); gender priming (e.g. Boschini et al., 2012, 2018); and

the framing of the game (e.g. Smith, 2015; van Rijn et al., 2019). There is also

variation in the characteristics across studies including differences in location and

subject population. 20 out of 38 studies in my sample explicitly mention gender (or

a related term) as the main topic of their paper. The majority of the experiments

are conducted among a population of university students (27 out of 38 studies).

To control for quality, I use a subset of this full sample that are published in

RelevantJournals2 for my baseline analysis. In particular, I include papers pub-

lished in the top 5 economics peer-reviewed journals and the main field journals

in behavioural and experimental economics. I also include papers published in the

NBER Working Papers series, the IZA Discussion Papers, and the CEPR Discussion

Paper series. This leaves me with results from 83 experiments across 29 studies.

In Figure 1, I plot the average contribution of men versus women in dictator

games, disaggregated by journal type. Results are closely distributed around the

45 degree line, with marginally more study estimates finding higher contributions

by women as compared to men. Results from experiments that are not from my

RelevantJournals list tend to be noisier and at more extreme values than that

found for results published in journals on my list. In Section 6, I explore these

relationships more systematically, by estimating how the type of results published

may differ by the characteristics of the study.

2Full list of Relevant Journals: American Economic Review, Econometrica, Journal of Political
Economy, The Quarterly Journal of Economics, Review of Economic studies, Journal of Behavioral
and Experimental Economics, Experimental Economics, Journal of Economic Behavior and Organ-
isation, Games and Economic Behavior, Economic Journal, American Economic Journal: Applied
Economics, Journal of Economic Psychology, Management Science, NBER Working Paper series,
IZA Discussion Papers, CEPR Discussion Paper series
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Figure 1: Average contributions of women versus men (% of stake size), by journal
type. RelevantJournals defined as papers published in the top 5 economics journals,
the field journals in behavioral and experimental economics, and the main working
paper series (NBER, IZA, and CEPR). See Footnote 2 for full list.
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Table 3: Study and experiment characteristics, summary

Study Relevant
Journal1

Gender
main topic2

Number of
observations

Share
women

Number of
relevant

experiments

Source of variation in experiments, if
multiple

Aguiar et al. (2009) Yes Yes 40 0.50 1
Alevy et al. (2014) No Yes 219 0.50 4 Anonymity of dictator, framing
Andreoni and Vesterlund (2001) Yes Yes 1136 0.33 8 Price of giving, size of pie
Baltrusch and Wichardt (2018) No Yes 1016 0.27 2 Identity of recipient
Ben-Ner et al. (2017) Yes No 293 0.67 2 Anonymity of dictator
Berge et al. (2015) Yes No 4048 0.60 5 Anonymity of dictator, timing of game
Bezu and Holden (2015) Yes Yes 724 0.50 2 Identity of recipient
Boschini et al. (2012) Yes Yes 1086 0.64 12 Priming (gender), price of giving
Boschini et al. (2018) Yes Yes 889 0.40 4 Priming (gender)
Brandstatter and Guth (2002) No No 51 0.61 1
Brock et al. (2013) Yes No 63 0.46 1
Cadsby et al. (2010) Yes Yes 699 0.49 4 Anonymity of dictator
Cason and Mui (1997) Yes No 188 NA3 1
Castillo and Cross (2008) Yes Yes 107 0.41 4 Price of giving, size of pie
Chaudhry and Saleem (2011) No No 238 0.56 1
Dasgupta (2011) No Yes 80 0.50 1
Dufwenberg and Muren (2006) Yes Yes 352 0.48 2 Anonymity of dictator
Eckel and Grossman (1998) Yes Yes 120 0.50 1
Gong et al. (2015) Yes Yes 144 0.50 2 Subject population
Grech and Nax (2020) 2019 Yes No 4120 0.61 1
Gummerum et al. (2010) No No 77 0.55 1
Halvorsen (2015) No No 177 0.40 4 Framing
Heinz et al. (2012) Yes Yes 83 0.55 2 Size of pie
Houser and Schunk (2009) No Yes 151 0.47 3 Anonymity of dictator
Iida (2015) Yes No 168 0.30 2 Subject population
John and Thomsen (2017) Yes Yes 985 0.48 1
Klinowski (2018) No Yes 308 0.50 1
Lazear et al. (2012) Yes No 83 0.53 1
Leibbrandt et al. (2015) No No 90 0.33 4 Size of pie, framing
Marlowe (2004) No No 43 0.49 1
Rigdon et al. (2009) No No 113 0.55 2
Saad and Gill (2001) No Yes 224 0.48 2 Identity of recipient
Slonim and Garbarino (2008) Yes No 580 0.52 2 Identity of recipient
Smith (2015) Yes No 144 0.21 3 Framing
Umer (2020) Yes No 157 0.50 2 Anonymity of dictator
van Rijn et al. (2017) Yes No 166 0.72 1
van Rijn et al. (2019) Yes Yes 573 0.54 4 Priming (guilt)
Visser and Roelofs (2011) Yes Yes 530 0.65 5 Price of giving, size of pie

Overall (out of 38 studies) 25 20 20,265 0.53 100

1 The RelevantJournals are defined as papers published in the top 5 economics journals, the field journals in behavioral and experimental economics, and the
main working paper series (NBER, IZA, and CEPR). See Footnote 2 for full list. 2 Gender listed as main topic if a gender related term (e.g. women, men,
gender) is used in the title of the paper. 3 Cason and Mui (1997) do not report gender split of participants.
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3 Methodology

3.1 Bayesian hierarchical models

In understanding gender differences in giving in the overall population, the main

empirical challenge is in how we should be summarising evidence across different

experiments and studies. The estimated difference in giving of women versus men

ranges from -0.292 to 0.465. As illustrated in Section 2.2 however, this range in

estimates could be driven by genuine variation across studies and experiments, due

to differences in experimental design and setting. Or alternatively, these differences

could be driven by sampling variation in the estimate, specific to either the study

or the experiment. Bayesian hierarchical models provide a method to disentangle

between these two sources of variation, and have been increasingly used in economics

(e.g. Rubin, 1981; Bandiera et al., 2016; Vivalt, 2016; Meager, 2019). By separating

between these sources of variation, the methodology allows us to obtain improved

estimates of the treatment effect within each study, as well as an estimate of the

overall treatment effect for the population.

Let ŷjk denote the estimated difference in giving of women relative to men in

experiment k within study j, such that a positive effect estimate ŷjk is an instance in

which the average giving of women is higher than that of men. In my sample, I have

a set of ŷjk and their associated standard errors, ŝejk, across j = 1, 2, ..., J studies,

where each study has k = 1, 2, ..., K experiments.

To set ideas, consider the following hierarchical model for the data:

ŷjk ∼ N(yjk, ˆse2jk) j = 1..., J, k = 1, ..., K (1)

yjk ∼ N(µ, τ 2)

In this model, each experiment k within study j, obtains an estimate of the

average treatment effect, ŷjk. This estimated treatment effect is normally distributed

around the true mean effect of the experiment, yjk, and has known variance, ŝe2jk.

In turn, each experiment mean, yjk, is drawn from a common distribution that is

normally distributed around the population mean, µ, and variance, τ 2.
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This simple model provides a structure to understand differences between the

overall effect for the population, µ, and the estimated effects for a given experiment,

ŷjk. It distinguishes between statistical sampling variation, as captured by ŷjk− yjk,

and genuine variation in the treatment effect, yjk − µ. The model further nests

approaches used in classical meta-analysis, as well as contrasting views on how we

should be aggregating results across experiments. On the one hand, when τ = 0,

the hierarchical model corresponds to the ‘full pooling’, classical fixed effects model,

where we assume that each experiment is estimating a common population effect.

In this case, the best estimate of the overall population mean is a weighted average

of the estimated treatment effect per experiment, where each estimate is weighted

by its precision (1/ŝe2jk). At the other extreme, when τ =∞ the model corresponds

to the ‘no pooling’ case and returns the original experiment estimates 3. Under no

pooling, we assume that each experiment is estimating its own context specific effect,

and hence there is no learning to be done across studies. The hierarchical model is

a compromise between these two extremes. The estimated τ 2 gives us a measure

of the external validity of study results: intuitively, the smaller is τ , the more each

additional experiment estimate, ŷjk, tells us about the overall population effect, and

hence, the more we should be updating our estimate and beliefs of µ.

The Bayesian hierarchical model builds on the hierarchical model by treating

µ and τ as random variables, and assigning distributional assumptions on these

variables. This gives us several advantages beyond the hierarchical approach. In

treating µ and τ as random variables, we are less likely to underestimate cross-

study heterogeneity (Rubin, 1981). The Bayesian approach further allows us to

obtain posterior distributions, so that we can obtain probability distributions on our

parameter estimates.

The Bayesian hierarchical model is based on four key assumptions: (1) Normality

of the estimated experiment effects, ŷjk, given parameters yjk and ŝejk, where the

variance is assumed to be known; (2) Normality of the study-specific mean, yjk,

given µ and τ ; (3) Exchangeability of the joint distribution of {yjk}J,Kj=1,k=1; and

3In practice, when τ is very large (i.e. more than 5 times the standard error) there is also no
pooling.
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(4) Distributional assumptions on the hyperpriors, µ and τ . I elaborate upon and

discuss each of these assumptions in turn.

Assumption (1), the normality of ŷj, follows almost directly from the assumption

of internal validity of the inference within each study. Given the sample sizes are all

sufficiently large, the central limit theorem justifies the normal distribution. Justifi-

cation for Assumption (2), is less straight forward, but there are a number of reasons

for which normality of the experiment level means is a natural assumption for this

analysis. From a frequentist perspective, Efron and Morris (1977) show that under

the assumption of normality, shrinkage estimators have smaller mean squared errors

than estimators with full pooling. More broadly, McCulloch and Neuhaus (2011)

show that inference on µ and τ under the assumption of normality is still generally

reliable even when the true underlying distribution is non-normal. From a prac-

tical standpoint, the normal-normal hierarchical structure facilitates comparability

of estimates with results from classical meta-analyses Gelman et al. (2013), which

enables me to compare findings from my analysis to that of Engel (2011).

The third assumption required for the model is that of exchangeability. The

data is exchangeable if the joint distribution of {yjk}J,Kj=1,k=1 is invariant to different

permutations of the indices. That is, prior to seeing the effect estimates, there is no

prior reason to believe that the average contribution of women relative to men would

be larger, smaller, or of similar magnitude in any experiment or study versus that

of another. In the absence of information to distinguish between the data and effect

estimates, Gelman et al. (2013) argue that exchangeability is the best assumption

for modelling. When data is available to distinguish between observations, we can

structure the model and condition on groups and study characteristics, so that the

model instead relies on conditional exchangeability, rather than full exchangeability.

In the context of this paper, there are several potential threats to exchangeability.

First and foremost, within each study j, there are k experiments that each provides

a distinct estimate of the treatment effect, ŷjk. Since experiments within the same

study are conducted and designed by the same set of researchers, the effect estimates

are likely to be subject to experimenter effects (Rosenthal, 1976). As such, the prior

distribution of experiment effects, yjk, within the same study j, are unlikely to be
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exchangeable.

To account for this, I adopt a two-stage estimation process outlined in Model 2. In

the first stage of the analysis, I obtain study-level effect estimates, ŷj, for all studies

with more than one experiment4. The first stage Bayesian hierarchical model gives

me an effect estimate and associated standard error for each study j. In the second

stage of the analysis, I run the full Bayesian hierarchical model on the study-level

estimates, ŷj, using either (1) the estimated treatment effect and associated standard

error from the first stage if a given study j has more than one relevant experiment,

k > 1; or (2) the estimated treatment effect and associated standard error reported

in a study if the original study has just one relevant experiment (k = 1).

First stage: Obtain estimates for ŷj for j = 1...J . For studies where k = 1,

ŷj = ŷjk. For studies with k > 1, ŷj is the Bayes estimator from:

ŷjk ∼ N(yjk, ˆse2jk) k = 1...K (2)

yjk ∼ N(yj, se
2
j)

Second stage: Using posterior means of ŷj and ŝe2j from the first stage, estimate:

ŷj ∼ N(yj, ˆse2j) j = 1...J

yj ∼ N(µ, τ 2)

Within the two-stage framework, the assumption of exchangeability now applies

to the joint distribution of {yjk}Kk=1 within the same j (in the first stage), and

the joint distribution of {yj}Jj=1 (in the second stage). In a given study, however,

there are often variants of lab experiments designed explicitly to tease out gender

differences in giving. For instance, in one of their experiments Boschini et al. (2018)

remind respondents of their gender prior to playing the dictator game, citing findings

from economics and psychology that find evidence of women being more responsive

4Note here that if k = 1 for a given j, ŷj = ŷjk.
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to gender priming and gender stereotypes (e.g. Steele and Aronson, 1995; Benjamin

et al., 2010). In these instances, exchangeability of effect estimates is likely to be

violated since prior to seeing the data, we would expect the relative giving of women

to be higher in experiments with priming, than that of experiments without. Con-

sistent with this reasoning, I exclude all experiments that use priming (e.g. gender,

guilt), and ‘take’ framing (as opposed to ‘give’)5 from my main baseline sample.

Finally, to close the model, I specify a prior distribution for the hyperparameters

(Assumption (4)). In context of the two-stage estimation, this means that I need

to specify prior distributions for (ŷj, ŝe
2
j) in the first stage, and (µ, τ) in the second

stage. I use the following prior distributions:

yj ∼ N(0, 0.2) (3)

sej ∼ N(0, 0.2)

µ ∼ N(0, 1)

τ ∼ N(0, 1)

Where possible I use weakly informative priors, so that the information in the

likelihood dominates and the prior distribution has minimal influence on the posterior

distribution. However, as noted by Gelman et al. (2017), the prior distribution will

matter for posterior inference when the data is weak. This is particularly relevant

in the first stage, where we only have a limited set of experiments per study. I thus

adopt a ‘tighter’ distributional assumption in the first stage; whereas, in the second

stage, I can use a relatively weaker prior, in line with the fact that I have stronger

data. In Section 5, I show that my results are robust to different prior assumptions.

5The ‘Take’ frame asks the dictator how much money they want to ‘take’ from the recipient,
as opposed to the standard dictator game, which asks how much they want to ‘Give’.
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4 Baseline results

My baseline sample includes all experiments published in relevant journals, other

than those that use priming (e.g. gender, guilt), and ‘take’ framing (as opposed to

‘give’). This leaves me with 69 experiments across 29 studies. I summarise this data

in Table 5. The mean gender difference in giving is smaller than that in the full

sample (1.3 vs 2.7 percentage points), which follows mechanically from the fact that

I have excluded experiments that are designed explicitly to accentuate these gender

differences.

Table 4: Average contributions by gender, % stake size - baseline sample

N Mean St. Dev. Min Max

Average contribution of men 69 0.289 0.185 0.001 1.045
Average contribution of women 69 0.303 0.175 0.00001 0.883
Gender difference in contribution 69 0.013 0.086 −0.292 0.257

Notes: Gender difference in contribution defined as the percentage point difference
in contribution of women relative to men. Positive gender difference corresponds to
women giving more than men. A contribution of more than 1 corresponds to experi-
ments in which the price of giving is less than 1 (see: Andreoni and Vesterlund, 2001, for
an example). Baseline sample includes all experiments published in RelevantJournals,
other than those that include priming and framing. RelevantJournals are defined as
papers published in the top 5 economics journals, the field journals in behavioral and
experimental economics, and the main working paper series (NBER, IZA, and CEPR).
See Footnote 2 for full list.

I estimate the two-stage model using my baseline data. Figure 2 summarizes the

posterior distribution of the estimated overall effect, µ. On average, women give 3.2

percentage points more than men in dictator games, with 95% probability that the

true mean lies between 1.7 and 4.5 percentage points.

To investigate whether my results are driven by sample selection, in Table 5,

I estimate the model with two other subsets of my sample: (1) the full dataset,

with results from all experiments and studies, irrespective of experimental design or
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Figure 2: Posterior distribution of effect estimate

journal of publication, and (2) the ‘Vanilla’ subset, for which I include only standard,

one-shot dictator games (i.e. where dictators and recipients are anonymous and the

price of giving is equal to one) that are published in my list of relevant journals.

The estimates of the posterior effect remain reasonably stable across all three sub-

sets of the data, and critically, the 95% intervals are positive and do not include zero

for any of the subsets. Compared with previous meta-analyses, the estimated differ-

ence in contributions is noticeably smaller. For instance, using the random-effects

model in a meta-analysis of dictator games, Engel (2011) finds that women give 5.8
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Table 5: Posterior estimates of µ, by subsample

Quantiles
N J Mean s.e. 2.5% 25% 50% 75% 97.5%

Baseline 69 29 0.0323 0.0069 0.0171 0.0284 0.0328 0.0370 0.0454
Full sample 100 38 0.0319 0.0046 0.0229 0.0289 0.0319 0.0351 0.0406
Vanilla 31 23 0.0441 0.0120 0.0197 0.0369 0.0443 0.0514 0.0690

Notes: Baseline sample: includes all experiments, other than those that include prim-
ing and framing, and that are published in RelevantJournals. RelevantJournals are
defined as papers published in the top 5 economics journals, the field journals in behav-
ioral and experimental economics, and the main working paper series (NBER, IZA, and
CEPR). Full sample: includes all experiments and results. Vanilla sample: includes only
standard, one-shot dictator games, published in RelevantJournals.

percentage points more than men. However, compared to the Bayesian hierarchical

model, the random-effects model treats priors, µ and τ , as fixed once estimated and

hence likely underestimates cross-study heterogeneity, and overestimates the pop-

ulation effect (Rubin, 1981). Indeed, the estimate of 5.8 percentage points is not

included in the 95% probability interval for my Baseline and Full sample datasets 6.

As alluded to in Section 3.1, the Bayesian hierarchical model gives us some indi-

cation of external validity by separating between sampling variation within studies

and genuine variation across studies. Intuitively, if the genuine heterogeneity across

studies is small or at the extreme, if τ = 0 (corresponding to full pooling), then each

study is implicitly estimating a common population effect, µ. In this case, pooling

together data across studies not only improves our understanding of the common

population effect, µ, but also improves our estimate for the study-specific effect, ŷj.

In contrast, if heterogeneity across studies is large, or at the extreme if τ = ∞
(corresponding to no pooling), then each study is estimating a separate independent

phenomenon and should be considered in isolation. The degree of genuine variation

across studies thus provides an indication of the degree to which we can generalise

and learn across contexts.

6Note here that the Vanilla subset would not be comparable to Engel (2011), since he includes
all dictator games in his sample that report gender differences in giving (and not just one-shot,
standard dictator games).
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As the scale of τ is difficult to interpret and compare across contexts, a common

measure of cross-study heterogeneity is instead the pooling metric suggested in Gel-

man and Pardoe (2006), which measures the genuine variation across studies (τ 2)

relative to total variation, (τ 2 + ŝe2j). More specifically, the degree of pooling λ is

given by:

λ = 1− τ 2

τ 2 + E(ŝe2j)

where λ = 1 corresponds to the full pooling case, and λ = 0 corresponds to the no

pooling case.

In Table 6, I provide the pooling metrics estimated for each of the studies in the

baseline sample. For all but one study, I find that the pooling metric is greater than

0.5, suggesting that study-level estimates are being adjusted towards the population

mean. The overall pooling factor across studies suggests that 89% of the heterogene-

ity in estimated effects is due to sampling variation. Thus, genuine heterogeneity

across studies is low and each additional study is informative on the overall popula-

tion effect.

The intuition of this result can also be seen graphically, in Figure 3. Here, I plot

the posterior effect estimates of each study in my baseline sample, and the corre-

sponding 95% probability intervals for a model with full pooling, partial pooling,

and with no pooling. Compared to full pooling, the 95% probability intervals of the

partial pooling model are larger, capturing the fact that there is some heterogeneity

across studies. These bounds are much smaller than that of the original study es-

timates, however, suggesting that differences in effects across studies are primarily

driven by sampling variation, rather than genuine variation.
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Table 6: Pooling factors for each study

Pooling factor
Overall Pooling 0.892

Aguiar et al. (2009) 0.986
Andreoni and Vesterlund (2001) 0.863
Ben-Ner et al. (2017) 0.993
Berge et al. (2015) 0.550
Bezu and Holden (2015) 0.963
Boschini et al. (2012) 0.876
Boschini et al. (2018) 0.924
Brock et al. (2013) 0.963
Cadsby et al. (2010) 0.911
Cason and Mui (1997) 0.916
Castillo and Cross (2008) 0.872
Dufwenberg and Muren (2006) 0.960
Eckel and Grossman (1998) 0.868
Gong et al. (2015) 0.981
Grech and Nax (2020) 0.489
Gummerum et al. (2010) 0.946
Heinz et al. (2012) 0.974
Houser and Schunk (2009) 0.962
Iida (2015) 0.981
John and Thomsen (2017) 0.640
Lazear et al. (2012) 0.919
Leibbrandt et al. (2015) 0.896
Rigdon et al. (2009) 0.982
Slonim and Garbarino (2008) 0.946
Smith (2015) 0.986
Umer (2020) 0.975
van Rijn et al. (2017) 0.871
van Rijn et al. (2019) 0.906
Visser and Roelofs (2011) 0.846

Notes: Pooling factors correspond to the metric
suggested by Gelman and Pardoe (2006). The over-
all pooling factor is an arithmetic mean of the pool-
ing factors across studies.
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Figure 3: Model comparison - posterior effect estimates of µ by study

5 Robustness checks

The validity of posterior inference is critically dependent on the set of assumptions

on the probability model, as laid out in Section 3.1. It is thus necessary to assess

the fit and sensitivity of the model to these assumptions. In this section, I conduct

a series of posterior predictive checks and explore the sensitivity of the analysis to

different distributional assumptions on the priors.
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5.1 Posterior predictive checks

If the model is suited to the setting, simulations under the posterior predictive dis-

tribution should look similar to the distribution of the true data. That is, after

estimation, it should seem plausible that the data was generated with the chosen

model (Gelman et al., 2013). While the use of posterior predictive checks violates

the likelihood principle, in that the data is being used twice (for estimation and for

model checking), Meng et al. (1994) and Gelman et al. (2013) argue that, at the

very least, we should look for systematic differences between the data and simula-

tions from the posterior predictive distribution to understand the limitations of the

model.

Figure 4: Cumulative density of data, y, overlaid with cumulative density of 25
simulations from the posterior predictive distribution, yrep

In Figure 4, I overlay the cumulative density of the data with that of simulations
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from the posterior predictive distribution. For simplicity, I suppress the subscripts

and let y denote observations from my data, and yrep denote simulations of the data

from the posterior predictive distribution. The cumulative density of the simulated

data closely resembles that of the true data, suggesting that it is plausible that the

data could be generated by the model.

I further construct measures of the fit by considering a series of relevant test

statistics for the posterior predictive distribution. For each test quantity, T (ŷ), I

calculate the corresponding Bayesian p-value, pb as follows:

pb = Pr(T (ŷrep, θ) ≥ T (ŷ, θ) | ŷ)

In practice, the Bayesian p-value is calculated as the proportion of simulations from

the posterior predictive distribution, for which the simulated value of the test statistic

is greater than the test quantity calculated from the data. The closer is the p-value

to 0 or to 1, the less likely it is that the data would be generated under the posterior

predictive distribution implied by the model.

In Figure 5 I consider four test-statistics of interest: the maximum, minimum,

median, and mean of study effects. I plot the posterior predictive distributions for

each of these test statistics, using the value of the test statistic for 1000 simulations

of the predictive data. For each of these, the Bayesian p-value is sufficiently far away

from 0 and 1, which suggests that the model generates predicted values that are close

to the sample data.
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Figure 5: Posterior predictive distribution and associated p-value for four test statis-
tics. Vertical lines denote the value of the test statistic for the data.

5.2 Prior checks

A second concern on inference is the sensitivity of results to the choice of the prior

distribution. In Table 7 I explore the sensitivity of my estimates to 12 alternative

choices of the prior distribution. For each of these specifications, I center the prior

distribution around a zero mean, consistent with the assumption of a null effect

unless proven otherwise by the data (as is the approach with hypothesis testing).

The posterior mean and 95% interval for µ remain stable for the range of different

distributional assumptions.
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Table 7: Prior checks - estimates of posterior mean

Model Priors Mean s.e. 2.5% 50% 97.5%
µ ∼normal(0,1); τ ∼normal(0,1) 0.0324 0.0072 0.0171 0.0328 0.0454
µ ∼cauchy(0,1); τ ∼normal(0,1) 0.0328 0.0069 0.0184 0.0329 0.0458
µ ∼normal(0,10); τ ∼normal(0,1) 0.0324 0.0072 0.0172 0.0327 0.0457
µ ∼cauchy(0,10); τ ∼normal(0,1) 0.0324 0.0072 0.0173 0.0328 0.0455
µ ∼normal(0,1); τ ∼normal(0,10) 0.0326 0.0070 0.0175 0.0328 0.0455
µ ∼cauchy(0,1); τ ∼normal(0,10) 0.0323 0.0072 0.0171 0.0326 0.0453
µ ∼normal(0,10); τ ∼normal(0,10) 0.0320 0.0073 0.0159 0.0324 0.0449
µ ∼cauchy(0,10); τ ∼normal(0,10) 0.0325 0.0070 0.0174 0.0330 0.0456
µ ∼normal(0,1); τ ∼uniform(0,1) 0.0326 0.0067 0.0188 0.0329 0.0450
µ ∼cauchy(0,1); τ ∼uniform(0,1) 0.0323 0.0077 0.0170 0.0329 0.0451
µ ∼normal(0,10); τ ∼uniform(0,10) 0.0327 0.0070 0.0178 0.0329 0.0457
µ ∼cauchy(0,10); τ ∼uniform(0,10) 0.0325 0.0071 0.0172 0.0329 0.0459

6 Publication Bias

The results from the Bayesian hierarchical model can be interpreted as the overall

gender differences in giving for dictator games, within settings for which researchers

have conducted dictator games and critically, within the population of working papers

and journals that publish results on gender differences in dictator game giving. The

extent to which the result can be applied to our broader understanding of gender

differences in altruism thus depends on the external validity of behaviour in dictator

games (and lab experiments more generally), and the degree of publication bias.

While there is extensive literature on the former issue (e.g. List, 2007; Levitt and

List, 2007; Benz and Meier, 2008; Franzen and Pointner, 2013), I now turn my focus

to exploring the extent of publication bias.

In particular, the findings from the Bayesian hierarchical model would potentially

be biased in the presence of publication bias, that is, if certain types of results are

systematically more likely to be published. Importantly, in exploring ‘publication

bias’ I am unable to distinguish between the decisions of the journal and the decisions

of the researcher, otherwise known as the ‘file drawer’ problem (Rosenthal, 1979).

The issue of the ‘file drawer’ problem is particularly relevant to this setting, since
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almost all studies of the dictator game collect data on gender, but only a select subset

report the average giving of women versus men. In fact, authors of 6 studies surveyed

in my data collection state explicitly that they do not find statistically significant

gender differences in giving, and hence do not report the results. Are researchers

more likely to report gender results if they find large differences in giving? Similarly,

are editors more likely to publish results that find a large effect? In this section, I

explore the extent to which this may be true.

I start the section by documenting the patterns in the distribution and variation

in estimated treatment effects and standard errors across studies. Then, I follow

Andrews and Kasy (2019) in estimating the conditional probability of publication

using a truncated selectivity model. Under the assumption that the latent variables

are independently and identically distributed, the model allows me to parametrically

estimate how the probability of publication varies with the study results. Finally, I

present the results and discuss the implications of this analysis.

6.1 Distribution of estimates

As a first pass for exploring the degree of publication bias, it is useful to consider

the distribution of test statistics, point estimates, and standard errors of the full

set of experiments. I follow Andrews and Kasy (2019) and Brodeur et al. (2016)

in considering the distribution of the z-statistics (the ratio of the effect size to the

standard error) above and below the 5% significance level threshold. Intuitively,

absent publication bias, there should not be any bunching or jumps in the test

statistics on either side of the significance thresholds.

I focus here on three subsets of the data that may be of interest. First, the

FullData, comprising of all 100 experiments in my sample. Second, theGenderTopic

subset, comprising of the 65 experiments from the 20 studies that explicitly refer to a

gender-related term in the title of the paper. Third, the TopJIF subset, comprising

of the 57 experiments in my full sample from the 19 studies published in top peer-

reviewed journals. As a proxy measure for journal quality, I use the Journal Impact

Factors (JIF) published in the 2019 Journal Citation Reports, which give a measure
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of the impact and influence of an academic journal. I include in my TopJIF the

subset of results from papers published in peer-reviewed journals that are ranked in

the top two quartiles of the 5 year average JIF indicators 7 .

In Figure 6, I construct a binned-density plot of the z-statistic for the full dataset,

the GenderTopic subset, and the TopJIF subset. Similar to Brodeur et al. (2016)

I observe jumps in the distribution around the cutoffs for -1.96, 0, and 1.96 for the

full dataset. This pattern is broadly similar for the subsets with slight differences:

while for the GenderTopic subset, there does not appear to be a jump in the data

around 1.96; for the TopJIF subset, the jump in the density is noticeably smaller

around zero.

Next, I construct funnel plots of the effect estimate against the standard errors

in Figure 7, as suggested by Andrews and Kasy (2019). Absent publication bias, as

the standard error of a study increases, the effect estimates should get noisier and be

symmetrically split to the right and left of the true effect. As with the density plots,

any bunching around the significance thresholds (as illustrated by the dotted lines)

would again be suggestive of some degree of selective publication. As seen in Figure

7 there is a mass of effect estimates asymmetrically bunched around positive effect

sizes that are statistically distinguishable from zero at the 5% level. This is seen for

all three subsets, but particularly evident for the full sample, as seen in panel A.

7Sutter and Kocher (2001) find that the JIF rankings in economics remain stable over time:
95% of economics journals remain in the same or neighbouring quartile over a 10-year period; and
there is even less variation in JIF for the Top 15 journals. Thus, although papers in my sample are
published at different times, the 5-year average JIF, is likely to be a good proxy for journal quality
at the time of publication.
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Figure 6: Binned density plot for three subsets of data. The dotted lines mark where
the z-statistic is equal to 1.96 and -1.96. Panel A: full dataset; Panel B: Gender
topic subset, including only observations with ‘gender’ in the title; Panel C: Top JIF
subset, including only observations published in peer-reviewed journals placed in Q1
& Q2 of 5 year Impact Factor rankings
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Figure 7: Scatter plot of effect estimate and standard error, by whether or not
observation is statistically distinguishable from zero, at the 5% level. The dotted
lines mark where |ŷ/ŝe| = 1.96. Panel A: full dataset; Panel B: GenderTopic subset,
including only observations with ‘gender’ (or gender related term) in the title; Panel
C: TopJIF subset, including only observations published in peer-reviewed journals
placed in Q1 & Q2 of 5 year JIF ranking
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6.2 Methodology

I follow Andrews and Kasy (2019) in modelling publication bias as a truncated

sampling process, in which studies are selected for publication only on the basis of

the results. Let us distinguish between latent (unobserved) variables, denoted by

an asterisk (e.g. ŷ∗jk, y
∗
jk), which capture the full set of experimental results; and

observed variables (e.g. ŷjk, yjk), which capture the subset of the latent results that

are published in journals or in working papers. In particular, we observe ŷ∗jk only if

Djk = 1, that is, if the result is published.

Assume (ŷ∗jk, y
∗
jk,

ˆse2
∗
jk, Djk) are jointly iid across j and k with

ŷ∗jk ∼ N(y∗jk,
ˆse2

∗
jk)

y∗jk ∼ N(µ∗, τ 2
∗
)

Djk | ŷ∗jk, y∗jk, µ∗ ∼ Ber(p(Z∗))

where ŷjk =

ŷ∗jk if Djk = 1

unobserved if Djk = 0

and p(ŷjk/ŝejk) ∝



βp,1 ŷjk/ŝejk < −1.96

βp,2 −1.96 ≤ ŷjk/ŝejk < 0

βp,3 0 ≤ ŷjk/ŝejk < 1.96

1 ŷjk/ŝejk ≥ 1.96

In the above model, an experiment is published with probability p(Z), where

Z is the z-statistic, calculated as the ratio of the estimated treatment effect and

corresponding standard error. I assume that the probability of publication differs

by the intervals of the test statistic around the 5% significant level (where the null

hypothesis is a zero effect size), and allow for asymmetric selection depending on the

sign of the estimated result. Relative to experiments that find a positive result that

is significant and distinguishable from zero at the 5% level, positive and insignificant

results are βp,3 as likely to be published, negative and insignificant results are βp,2 as
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likely to be published, and finally, negative and significant results are βp,1 as likely

to be published.

Under the assumption that the latent variables are independently and identically

distributed, Andrews and Kasy (2019) show that we can parametrically identify and

estimate p(z) up to scale. Note here that while the independence of latent vari-

ables cannot be tested by construction (since we do not observe studies that are not

published), a clear violation in this setting is the fact that I observe results from mul-

tiple experiments within the same study. To account for this, I assume conditional

independence and cluster standard errors by study j. In the proceeding section, I es-

timate the conditional probability of publication, p(z), using the maximum likelihood

estimation set out in Andrews and Kasy (2019).

6.3 Results

I estimate the conditional probability of publication across the three sub-samples of

my data: the Full dataset, the GenderTopic subset; and the TopJIF subset. The

results are presented in Table 8.

Using the full sample of experiments, I find strong evidence of selection based on

statistical significance. As seen in columns 4-6 of Table 8, positive results (where

women give more than men) that are statistically distinguishable from zero at the 5%

level are over 13 times more likely to be published than statistically significant neg-

ative results that find that men give more than women; and over 3 times more likely

to be published than results that are negative and statistically insignificant. While

the magnitude of βp,3 suggests that results that are positive and statistically signif-

icant are more likely to be published than those that are positive and statistically

insignificant, this difference is not significant at conventional levels.

Restricting the full sample of experiments now to papers that explicitly study

gender, the GenderTopic subset, I find evidence for selection based on statistical

significance, but not on the sign. Among dictator games that study gender differ-

ences, experiments that find a statistically significant and positive result are over 4

times more likely to be published than a negative and insignificant result, and over
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Table 8: Estimates of p(z), by subset

p(z) Interpretation1

(1) (2) (3) (4) (5) (6)
Studies N βp,1 βp,2 βp,3 1/βp,1 1/βp,2 1/βp,3

Full sample 38 100 0.074 0.312 0.705 13.514 3.205 1.418
(0.131) (0.298) (0.529)

GenderTopic 20 65 0.245 0.224 0.403 4.082 4.464 2.481
(0.456) (0.193) (0.232)

TopJIF 19 57 1.543 0.423 0.333 0.648 2.364 3.003
(1.077) (0.334) (0.241)

1 A positive and significant result is 1/βp,1 more likely to be published than a negative
and significant result; 1/βp,2 more likely to be published than a negative and insignificant
result; and 1/βp,2 more likely to be published than a positive and insignificant result.
2 GenderTopic subset, includes only observations with ‘gender’ (or a gender related term)
in the title; TopJIF subset, includes only observations published in peer-reviewed journals
placed in Q1 & Q2 of the 5 year Journal Impact Factor rankings in the 2019 Journal
Citation Reports.

2 times more likely to be published than a positive and insignificant result.

Selection based on statistical significance is less severe in the TopJIF subset,

the sample of results from peer-reviewed journals with the highest journal impact

factors. Positive and significant results are around three times more likely to be

published than positive and non-significant results. Compared with the two other

subsets, the relative probability of publishing negative results (significant or insignif-

icant) is higher compared with the two other subsets. In fact, the magnitude of βp,1

suggests that negative and significant results are more likely to be published than

positive and significant results, although this difference is not statistically significant

at conventional frequentist levels.

6.4 Implications for Bayesian inference

What do these results mean for Bayesian inference? The implications for posterior

inference depend on the distributional assumptions on the hyperparameters, µ and

τ . Andrews and Kasy (2019) distinguish between two extreme classes of priors: un-
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related parameters and common parameters8. Whereas under unrelated parameter

priors, posterior inference is unaffected by publication bias, under common param-

eters priors, inference is affected and the posterior distribution would need to be

adjusted using the truncated likelihood. Similarly, Yekutieli (2012) show that under

‘fixed’, non-informative priors, Bayesian inference needs to be adjusted for selection.

In the context of this study the hyperpriors, µ and τ , likely lie between the two

extremes of unrelated and common parameters. Hence posterior inference from the

two-stage model is likely to be affected by selection.

Ideally, I would quantitatively adjust the posterior effect estimates to account for

selective publication. As seen in Section 6 however, the form of selection bias appears

to operate in a complex way, and the conditional probability of publication differs

by both the topic of the study and by the quality of the journal. Hence a blanket

uniform adjustment of the posterior treatment effect is unlikely to be forthcoming.

Taken together, these results suggest that the estimate from the Bayesian hier-

archical model is likely to provide an upper bound estimate of the overall effect for

the wider population.

7 Conclusion

By aggregating results from dictator game experiments, I make two key contribu-

tions. First, I estimate the average gender difference in dictator game giving using a

Bayesian hierarchical model that allows me to separate between sampling variation

and genuine heterogeneity across studies. Second, I contribute to the interpreta-

tion of these studies, by exploring how the prevalence of publication bias affects the

results available in published and working papers.

I find that given the available evidence, women give 3 percentage points more than

men in dictator games. This effect is smaller than that found in the most frequently

cited studies, and the estimated 95% probability interval of 1.7 to 4.5 percentage

8Andrews and Kasy (2019) define unrelated priors as the case in which the prior distribution is a
point mass around a value; whereas common parameters priors, are such that the prior distribution
assigns positive probability to point-measures of the prior.
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points rules out existing estimates of the aggregate gender effect (e.g. Engel, 2011).

I show that the observed gender differences are likely driven by publication bias,

whereby papers are selected based on statistical significance. Thus, while the average

giving of women relative to men is 3 percentage points among published results, the

true effect for the wider population is likely to be smaller.

Given that lab experiments routinely collect data on gender (but may or may not

report the findings), my results also highlight the importance of data transparency

to facilitate comparability across studies.

While previous research argues that gender differences in dictator game giving

are driven by experimental design, I show that even in the presence of contextual

differences, estimates of gender differences in altruism are likely to overestimate the

effect due to selective publication. Although I do not explicitly study the role of

experimental characteristics in this paper, understanding the relative importance of

publication bias versus experimental design would be an interesting direction for

future research.
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